
Vibe-free zone:
serious AI assisted
development for
Symfony
How to leverage AI assistants
the right way

whoami

◼ Love to tinker with stuff. Code,
cameras, watches.

◼ I know own 4 ugly sweaters
◼ Love buying domain names for

unfinished side projects.
◼ Started PHP in 98. Started using SF1

in 2003.
◼ Vibe coder since 2023Guillaume Moigneu

Aka G/
guillaume.id

The concepts, the tools & the
capabilities are changing

exceptionally fast, faster than
anything we've seen before

⚡

So let's focus on the guiding
principles and the practices instead

of the actual tools.

��

Time to develop some
symfony/ai stuff.

��

Quick survey!

Types of Assistants and Agents
● Chat-based (ChatGPT, Gemini, Claude Desktop, Super Grok)

● CLI/IDE Agent (Claude Code, Cursor, Windsurf, Kiro, Cline, etc)

● Background Agent (Codex, Jules, Claude Code + GitHub integration,

Cursor Background Agents, Devin, OpenHands, etc)

● Agent Swarm (Factory, Codex - in part, custom workflows)

● Non-Engineering (ChatGPT Agent, Operator, Deep Research, Manus,

etc)

Most of the time, it is similar to dealing
with an overly confident, exceptionally
eager, inexperienced junior developer

�� 💻

How can we make it more like
a cooperating rockstar developer?

�� 🎤

How AI Assistants and Agents work and what
do they need to give great answers?

Context

Prompts

Output Code

Code editor or
repository

AI Agent

MCP's

Web search

Bash, etc.

Tools

LLM Provider Model

Setting up your project the right way!
Context.

��

Feeding our agent with the right knowledge (1)
First, let's talk about our project

● How is our project architectured? Technology stack, components, etc.

● What is our project doing overall? What are the specifications?

● How do we build, run and test our project?

● Are there any external dependencies, endpoints, etc.

Just imagine having a new hire and letting them run the project without

any help from anyone else.

Feeding our agent with the right knowledge (2)
Second, let's talk about us (or our team)

● Do we have coding preferences? (tabs vs. spaces, comments, etc.)

● Are there any specific architecture choices that matter?

● What are the naming conventions?

● How do we document the project?

● Are there libraries we want (or not) to use

Again, what would you expect from a new hire when you are doing their

code review?

How to store this knowledge?
● Anything project related should be in the classic README.md

● Any team or personal preferences should be store in an AGENTS.md file

If you prefer organizing the knowledge in subfolders, keep the two md's and then

create a knowledge and rules folder (just my preference). This makes it

easier to copy to another project.

If using Claude Code, just symlink CLAUDE.md to AGENTS.md. Or create

sub-agents.

http://agents.md
http://agents.md

● Move the rules context to a specialized agent

● Can run in parallel for increased output speed

● Maintain and reuse in multiple projects

Sub-agents

● Context7 can pull any documentation but can overwhelm the context

● Chrome-MCP automates a local Chrome instance for testing

● Upsun. Obviously.

● Postgres, etc.

● WebFetch, WebQuery, Bash, etc.

MCP's and tools

Too much
knowledge is
bad: context
rot

aka. the needle in a
haystack

Source:
https://research.try
chroma.com/context-r
ot

https://research.trychroma.com/context-rot
https://research.trychroma.com/context-rot
https://research.trychroma.com/context-rot

Review and monitor your context

Maintaining specifications of the projects
When developing new features, start by always writing the

specifications in the knowledge folder.

Maintaining both product and technical specifications of the project helps with:

■ Avoid conflicts when developing new ones. Also bugfixes

■ Automate documentation

■ Allows easy client / ports / services development

Write the specifications for the SwiftUI client.

Let's review some actual stuff.

��

Is my MCP ready ???

��

Shameless plug.
What you can deploy this way in a week of holidays!

sting9.org Symfony + Go + TanStack + Swift (iOS)

airportflow.app Symfony + Go + TanStack + Swift (iOS)

dearvalentine.app Symfony + Go + Swift (iOS)

instags.pics Symfony + Swift (iOS)

https://sting9.org
https://airportflow.app/airports/IAH
https://dearvalentine.app
https://instags.pics

Thank you.
Guillaume Moigneu
Field CTO @ Upsun
guillaume@upsun.com
guillaume.id

